Teoria degli errori e fondamenti di statistica/C.4.5
Questo testo è stato riletto e controllato. |
◄ | C.4.4 | C.4.6 | ► |
C.4.5 Verifica di ipotesi nell’interpolazione lineare
Nel paragrafo 11.4.1 abbiamo ricavato le formule (11.10) dei minimi quadrati e le formule (11.11) per l’errore dei coefficienti della retta interpolata: queste ultime richiedono la conoscenza dell’errore comune sulle ordinate che, di consueto, viene ricavato a posteriori dai dati attraverso l’equazione (C.8).
Assai di frequente è necessario verificare delle ipotesi statistiche sui risultati dell’interpolazione lineare; una volta ricavata, ad esempio, la pendenza della retta interpolante, si può o voler confrontare la stima ottenuta con un valore noto a priori, o voler costruire attorno ad essa un intervallo corrispondente ad un certo livello di confidenza; o, ancora, si può voler effettuare il confronto (o calcolare l’ampiezza dell’intervallo di confidenza) per un valore della stimato sulla base dell’interpolazione, e la cui varianza è data dalla (C.12).
È naturale pensare di sfruttare per questo scopo le tabelle della distribuzione normale; ma questo implicitamente richiede che il numero di coppie di dati a disposizione sia sufficientemente elevato perché la stima di ottenuta a posteriori dai dati si possa considerare esatta. In realtà quando l’errore è ricavato a posteriori tutte le grandezze precedentemente citate non seguono la distribuzione normale ma la distribuzione di Student con gradi di libertà.