Pagina:Opere matematiche (Cremona) II.djvu/60



40.

SULLE TRASFORMAZIONI GEOMETRICHE
DELLE FIGURE PIANE.

Nota I.


Memorie dell’Accademia delle Scienze dell’Istituto di Bologna, serie II, tomo II (1863), pp. 621-630.
Giornale di Matematiche, volume I (1863), pp. 305-311.


I signori Magnus e Schiaparelli, l’uno nel tomo 8.° del giornale di Crelle, l’altro in un recentissimo volume delle Memorie dell’Accademia scientifica di Torino, cercarono le formole analitiche per la trasformazione geometrica di una figura piana in un’altra pur piana, sotto la condizione che ad un punto qualunque dell’una corrisponda un sol punto nell’altra, e reciprocamente a ciascun punto di questa un punto unico di quella (trasformazione di primo ordine). E dall’analisi de’ citati autori sembrerebbe doversi concludere che, nella più generale ipotesi, alle rette di una figura corrispondono nell’altra coniche circoscritte ad un triangolo fisso (reale o no); ossia che la più generale trasformazione di primo ordine sia quella che lo Schiaparelli appella trasformazione conica.

Ma egli è evidente che applicando ad una data figura più trasformazioni coniche successive, dalla composizione di queste nascerà una trasformazione che sarà ancora di primo ordine, benché in essa alle rette della figura data corrisponderebbero nella trasformata, non già coniche, ma curve d’ordine più elevato.

In questo breve scritto mi propongo di mostrare direttamente la possibilità di trasformazioni geometriche di figure piane, nelle quali le rette abbiano per corrispondenti delle curve di un dato ordine qualsivoglia. Stabilisco dapprima due equazioni che devono aver luogo fra i numeri de’ punti semplici e multipli comuni a tutte le curve che corrispondono a rette. Poi dimostro come, per mezzo di raggi appoggiati a due linee direttrici, si possano projettare i punti di un piano sopra un secondo piano, e così trasformare una figura data in quello, in un’altra figura situata in questo.