Questa pagina è stata trascritta, formattata e riletta. |
— 20 — |
- a, b, c ∈ 1 − Cl . ⊃ . (bc)″ ⊃ (abc)″.
- a, b, c ∈ 1 − Cl . r = (bc)″ : ⊃ . a′r ⊃ (abc)″.
- p ∈ 3 . r ∈ 2 : ⊃ ∴ x ∈ p . x − ∈ r : − =x ∧.
{Hp . a, b, c ∈ 1 − Cl . p = (abc)″ . a − ∈ r : ⊃ . Ts.(α)
»». a ∈ r . b − ∈ r : ⊃ . Ts.(β)
»». a ∈ r . b ∈ r : ⊃ : c − ∈ r : ⊃ . Ts.(γ)
Hp . (α) (β) (γ) : ⊃ Ts.}
- a, b, c ∈ 1 − Cl . p ∈ abc : ⊃ . abc = p ∪ pa ∪ pab ∪ pb ∪ pbc ∪ pc ∪ pca.
{Hp . ⊃ . bc ∪ a′p − = ∧.(α)
Hp . d ∈ bc . d ∈ a′p : ⊃ : bc = bd ∪ d ∪ dc . abc = abd ∪ ad ∪ adc . p ∈ ad . ad = ap ∪ p ∪ pd . abd = bap ∪ bp ∪ bpd . adc = cap ∪ cp ∪ cpd . pbc = pbd ∪ pd ∪ pdc : ⊃ . Ts.(β)
Hp . (α) (β) : ⊃ Ts.}
- a, b, c ∈ 1 − Cl . p, q ∈ abc . p − = q : ⊃ . p′q ∩ (a ∪ ab ∪ b ∪ bc ∪ c ∪ ca) − = ∧.
{Hp . P26 : ⊃ : q ∈ p (a ∪ ab ∪ b ∪ bc ∪ c ∪ ca) : ⊃ Ts.}
- r ∈ 2 . a ∈ 1 . a − ∈ r . b ∈ r . c ∈ b′a . d ∈ a′r : ⊃ . d ∈ c′r.
{Hp . ⊃ . r ∩ ad − = ∧.(α)
Hp . e ∈ r . e ∈ ad . e = b : ⊃ : d ∈ a′b . a′b = c′b : ⊃ . Ts.(β)
Hp . e ∈ r . e ∈ ad . e − = b : ⊃ . a, b, d − ∈ Cl . r = (be)″ . b′e ∩ dc − = ∧ : ⊃ : r ∩ dc = ∧ : ⊃ . Ts.(γ)
Hp . (α) (β) (γ) : ⊃ Ts.}
- r ∈ 2 . a ∈ 1 . a − ∈ r . b ∈ r . c ∈ b′a : ⊃ . a′r ⊃ c′r.{P29 = P28}
- r ∈ 2 . c ∈ 1 . c − ∈ r . a ∈ cr : ⊃ . a′r ⊃ c′r.{P30 = P29}
- a, b, c ∈ 1 . − Cl . p ∈ abc : ⊃ . p′abc ⊃ a ∪ ... ∪ ab ∪ ... ∪ a′b ∪ ... ∪ abc ∪ a′bc ∪ ... ∪ a′b′c ∪ ...
{Hp . ⊃ . p′pa = pa ∪ a ∪ p′a ⊃ abc ∪ a ∪ b′c′a.(α)
Hp . ⊃ . p′pab = pab ∪ ab ∪ p′ab ⊃ abc ∪ ab ∪ p′(ab)″.(β)
Hp . ⊃ . p′(ab)″ ⊃ c′(ab)″.(γ)
Hp . (α) (β) (γ) : ⊃ Ts.}
- a, b, c ∈ 1 − Cl : ⊃ . (abc)″ = a ∪ b ∪ c ∪ ab ∪ ac ∪ bc ∪ a′b ∪ ab′ ∪ b′c ∪ cb′ ∪ c′a ∪ ac′ ∪ abc ∪ a′bc ∪ b′ca ∪ c′ab ∪ a′b′c ∪ b′c′a ∪ c′a′b.{P22 . P31 : ⊃ . P32}