Questa pagina è ancora da trascrivere o è incompleta. |
che si deduce dalla (2). Ma considerata come parte dell’intersezione della superfìcie di quart’ordine col piano P, la conica M si riduce alla retta bc presa due volte: cioè il piano P tocca la superfìcie lungo tutta la retta bc.
Se R giace in un piano osculatore, è facile vedere che esso fa parte della superfìcie di quart’ordine: perchè ogni retta condotta nel piano pel punto di contatto e contata due volte tien luogo di una conica M. Dunque, se R è l’intersezione di due piani osculatori, il luogo delle coniche M situate negli altri piani passanti per R sarà una superfìcie di second’ordine.
- Cornigliano (presso Genova), 19 settembre 1863.