382 |
introduzione ad una teoria geometrica delle curve piane. |
|
essere assunto come centro armonico di grado (17). Cioè il fascio delle tangenti agli rami di costituisce il luogo dei centri armonici di grado , rispetto al polo .
73. Sia un polo dato ad arbitrio nel piano della curva , dotata di un punto multiplo secondo . Condotta la trasversale , punti coincideranno in ; quindi (16) questo medesimo punto terrà luogo di centri armonici del grado ().
{Da ciò segue che la polare ma di passa per . La polare ma di rispetto alla polare ma di coincide [69, c] colla polare ma di rispetto alla polare ma di ; ma quest’ultima è il sistema di rette incrociate in ; dunque65 la polare ma di rispetto alla polare ma di consta di rette per . Cioè [cfr. nota al n.° preced.] è un punto plo per la polare ma di , e le tangenti a questa in sono le rette formanti la polare ma di rispetto al fascio delle tangenti di in .} Ossia:
Un punto plo della curva fondamentale è multiplo secondo per la polare ma di qualsivoglia polo.66
(a) Applichiamo le cose premesse al caso che sia il sistema di rette concorrenti in uno stesso punto . Questo, essendo un punto plo pel luogo fondamentale, sarà multiplo secondo per la prima polare di un punto qualunque ; la quale sarà per conseguenza composta di rette incrociantisi in .
Condotta pel polo una trasversale qualunque che seghi le rette date in , se sono i centri armonici di grado , le rette costituiranno la prima polare di (20). Questa prima polare non cambia (18), quando il polo varii mantenendosi sopra una retta passante per .
Se fra le rette date ve ne sono coincidenti in una sola , nel punto saranno riuniti (16) centri armonici di grado , epperò rette coincideranno in , qualunque sia .
(b) Come caso particolare, per si ha:
Se la linea fondamentale è un pajo di rette , la polare di un punto è la retta coniugata armonica di rispetto alle due date1. E se queste coincidono, con esse si confonde anche la polare, qualunque sia il polo.
74. Ritorniamo ad una curva qualunque dotata di un punto plo . Assunto un polo arbitrario , la prima polare di questo passerà volte per (73); e le rette tangenti a in costituiranno l’ma polare del medesimo punto (72). Analogamente le tangenti in alla prima polare di formano l’ma polare di rispetto alla prima polare di , ossia, ciò che è lo stesso (69, c), la prima polare di rispetto all’ma polare di . Dunque (73, a):
- ↑ A questa retta si dà il nome di polare del punto rispetto all’angolo .