Pagina:Le sfere omocentriche.djvu/45

N.° IX. le sfere omocentriche, ecc. 33

dunque anch’essa la figura di lemniscata, come la curva sferica descritta dai pianeti in conseguenza del movimento della terza e della quarta sfera: la quale curva pertanto noi crediamo esser l’ippopeda d’Eudosso, essendo ben naturale che a curve di forme consimili (sebbene geometricamente assai diverse), Eudosso e Perseo abbiano assegnato il nome di un medesimo oggetto di uso familiare ai Greci, l’ἶππου πέδη, la cui forma quelle curve richiamavano alla memoria.


    definitionis quartae expositionem, quae de recta est linea et sectionibus spiricis commentati sunt T. H. Knochius et F. J, Maerkerus, Herefordiae 1856. Differiscono però i citati autori in questo, che secondo loro la curva, la quale Proclo dice esser più larga nel mezzo e più stretta agli estremi, sarebbe una delle due ovali conjugate, in cui si risolve la sezione spirica, quando il piano segante parallelo all’asse penetra nel vuoto interno dell’anello, dividendo questo in due tronchi separati. Delle tre sezioni, questa sarebbe la più vicina all’asse, mentre, secondo il mio modo di vedere, sarebbe la più lontana. Ma ciò non importa nulla alla questione che ci occupa, relativa all’ippopeda, sulla quale ho il piacere di trovarmi d’accordo coi due dotti sopra nominati.

    Knoche e Maerker però, ammettono come possibile, se non come probabile, l’opinione che si possa soddisfare alle espressioni di Proclo, supponendo le tre sezioni non parallele all’asse principale della spira, ma inclinate e passanti pel centro della spira nel modo che indica la fig. 11. L’ippopeda sarebbe allora la sezione AB bitangente alla superficie, e avente due punti doppj: le altre due curve consterebbero ciascuna di due ovali, cioè la sezione CD darebbe due ovali concentriche, sebbene non simili, e la sezione EF darebbe due ovali disgiunte e simmetriche intorno ad un solo asse. Non posso accostarmi a questa opinione. Primo, è da notare che i Greci avrebbero forse veduto nelle sezioni CD due linee diverse, invece di una sola; ove le sezioni spiriche si trovano sempre designate come tre. Ma l’obbiezione più grave sta in questo, che la sezione AB non può esser stata chiamata ippopeda, per la semplice ragione, che questa sezione non è una curva nuova, ma risulta semplicemente dall’insieme di due circonferenze di circolo, che s’intersecano nei due punti m n dove il piano segante AB tocca e taglia simultaneamente la superficie nella parte concavoconvessa. Il qual fatto sembra che sìa sfuggito alle indagini di quei due dotti espositori di Proclo.
    Una terza interpretazione diversa dalle precedenti sembra richiesta dal passo seguente di Proclo (Comm. in Euc. ed. Friedlein p. 119): „La superficie spirica è generata dalla rivoluzione di un circolo, che rimane costantemente perpendicolare (ad un piano) e si aggira intorno ad un medesimo punto diverso del proprio centro. Onde nascono tre specie di spira, secondo che tal punto è sulla circonferenza, o dentro della circonferenza, o fuori della circonferenza (del circolo generatore). Nel primo caso la spira dicesi continua, nel secondo implicata, nel terzo disgiunta. E vi sono tre sezioni spiriche corrispondenti a queste tre differenze“. Secondo questa descrizione adunque le tre spiriche di Perseo non nascerebbero dalla stessa spira diversamente tagliata, ma bensì dalle tre diverse specie di spira tagliate secondo una medesima norma, come da tre coni di diversa specie tagliati secondo una stessa regola derivavano gli antichi le tre coniche. Però notano qui giustamente i prelodati Knoche e Maerker, questo passo trovarsi in manifesta contraddizione colla descrizione data da Proclo medesimo in un altro luogo dei caratteri geometrici delle tre spiriche, e da me riferita qui sopra. Infatti, in qualunque modo si voglia cercare di tagliare le tre spire secondo una costante regola, non si otterranno mai tre curve, le quali quadrino esattamente con quella descrizione. Sembra dunque che il parallelo delle tre specie di spira colle tre spiriche, sia derivato da una imperfetta idea della generazione delle medesime. Ciò che aumenta il dubbio è il fatto, che nell’edizione principe di Proclo curata da Simone Grineo nel 1533, quel luogo, che qui si è stampato in caratteri corsivi, manca, e non vi si allude in alcun modo alle linee spiriche, sebbene quel luogo si trovi, col tenore qui riferito, nella versione di Barozzi e nella recente edizione di Friedlein. È da notare di più, che quelle parole: E vi sono tre sezioni spiriche ecc., sono perfettamente inutili in quella parte del discorso, che è tutta sulle superficie e non sulle linee. Ma senza dare troppo peso a queste circostanze, diremo che l’autore di quelle parole (chiunque si fosse) era forse erroneamente persuaso, che dalle tre forme di spira dovessero derivar le tre spiriche in un modo analogo a quello, con cui dalle tre varietà di cono ottusangolo, rettangolo ed acutangolo derivavano, con una sezione perpendicolare ad uno dei lati del cono, l’iperbole, la parabola e l’ellisse.

         Per la nostra quistione tuttociò è abbastanza indifferente, risultando con evidenza dalle notizie di Proclo sull’ippopeda, che questa linea era una curva unica, ripiegata sopra sè medesima in modo da tagliar sè stessa ad angolo, formando un punto doppio. La possibilità di due punti doppj è esclusa, perciò la sezione si risolve allora nell’insieme di due circoli. Dunque il piano segante la spira secondo l’ip-

5