Questa pagina è ancora da trascrivere o è incompleta. |
pedantesco affronto: però per intera sodisfazione recateci pur la prova, che dite geometrica, del mantenersi sempre l’egualità tra quei solidi e quelle basi loro, che penso che non possa esser se non molto arguta, essendo così sottile la filosofica meditazione che da tal conclusione depende.
SALV. La dimostrazione è anco breve e facile. Ripigliamo la segnata figura, nella quale, per esser l’angolo IPC retto, il quadrato del semidiametro IC è eguale alli due quadrati de i lati IP, PC: ma il semidiametro IC è eguale alla AC, e questa alla GP, e la CP è eguale alla PH; adunque il quadrato della linea GP è eguale alli due quadrati delle IP, PH e ’l quadruplo e i quadrupli, cioè il quadrato del diametro GN è eguale alli due quadrati IO, HL: e perché i cerchi son tra loro come i quadrati de’ lor diametri, il cerchio il cui diametro GN sarà eguale alli due cerchi i cui diametri IO, HL, e tolto via il comune cerchio il cui diametro IO, il residuo del cerchio GN sarà eguale al cerchio il cui diametro è HL. E questo è quanto alla prima parte: quanto poi all’altra parte, lasceremo per ora la dimostrazione, sì perché, volendola noi vedere, la troveremo nella duodecima proposizione del libro secondo De centro gravitatis solidorum posta dal Sig. Luca Valerio, nuovo Archimede dell’età nostra, il quale per un altro suo proposito se ne servì, sì perché nel caso nostro basta l’aver veduto come le superficie già dichiarate siano sempre eguali, e che, diminuendosi sempre egualmente, vadano a terminare l’una in un sol punto e l’altra nella circonferenza d’un cerchio, maggiore anco di qualsivoglia grandissimo, perché in questa consequenza sola versa la nostra maraviglia.
SAGR. Ingegnosa la dimostrazione, quanto mirabile la reflessione fattavi sopra. Or sentiamo qualche cosa circa l’altra difficoltà promossa dal Sig. Simplicio, se però avete alcuna particolarità da dirvi sopra, che crederei che non potesse essere, essendo una controversia stata tanto esagitata.
SALV. Avrò qualche mio pensiero particolare, replicando prima quel che poco fa dissi, cioè che l’infinito è per sé solo da noi incomprensibile, come anco gl’indivisibili; or pensate quel che saranno