Questa pagina è ancora da trascrivere o è incompleta. |
non quanti, mi paiono scogli assai duri da passargli e l’istesso dover ammettere il vacuo, tanto concludentemente reprovato da Aristotele, non manca delle medesime difficoltà.
SALV. Ci sono veramente coteste, e dell’altre: ma ricordiamoci che siamo tra gl’infiniti e gl’indivisibili, quelli incomprensibili dal nostro intelletto finito per la lor grandezza, e questi per la lor piccolezza. Con tutto ciò veggiamo che l’umano discorso non vuol rimanersi dall’aggirarsegli attorno; dal che pigliando io ancora qualche libertà, produrrei alcuna mia fantasticheria, se non concludente necessariamente, almeno, per la novità, apportatrice di qualche maraviglia. Ma forse il divertir tanto lungamente dal cominciato cammino potrebbe parervi importuno, e però poco grato.
SAGR. Di grazia, godiamo del benefizio e privilegio che s’ha dal parlar con i vivi e tra gli amici, e più di cose arbitrarie e non necessarie, differente dal trattar co’ i libri morti, li quali ti eccitano mille dubbi e nissuno te ne risolvono. Fateci dunque partecipi di quelle considerazioni che il corso de i nostri ragionamenti vi suggerisce, ché non ci mancherà tempo, mercé dell’esser noi disobbligati da funzioni necessarie, di continuar e risolvere l’altre materie intraprese; ed in particolare i dubbii toccati dal Sig. Simplicio non si trapassino in tutti i modi.
SALV. Così si faccia, poiché tale è il vostro gusto: e cominciando dal primo, che fu come si possa mai capire che un sol punto sia eguale ad una linea, vedendo di non ci poter far altro per ora, procurerò di quietare o almeno temperare una improbabilità con un’altra simile o maggiore, come talvolta una maraviglia si attutisce con un miracolo. E questo sarà col mostrarvi, due superficie eguali, ed insieme due corpi pur eguali e sopra le medesime dette superficie, come basi loro, collocati, andarsi continuamente ed egualmente, e queste e quelli, nel medesimo tempo diminuendo, restando sempre tra di loro eguali i loro residui, e finalmente andare, sì le superficie come i solidi, a terminare le lor perpetue egualità precedenti, l’uno de i solidi con l’una delle superficie in una lunghissima linea, e l’altro solido con l’altra superficie in un sol punto, cioè, questi in un sol punto, e quelli in infiniti.