Questa pagina è ancora da trascrivere o è incompleta. |
quello che cercavamo. S’acquista, dunque, di robustezza nella canna vota sopra la robustezza del cilindro solido secondo la proporzione de i diametri, tutta volta però che amendue siano dell’istessa materia, peso e lunghezza. Sarà bene che conseguentemente andiamo investigando quello che accaggia negli altri casi indifferentemente tra tutte le canne e cilindri solidi egualmente lunghi, benché in quantità di peso diseguali e più e meno evacuati. E prima dimostreremo, come:
Data una canna vota, si possa trovare un cilindro pieno, eguale ad essa.
Facilissima è tal operazione. Imperò che sia la linea AB diametro della canna, e CD diametro del voto: applichisi nel cerchio maggiore la linea AE egual al diametro CD, e congiungasi la EB. E perché nel mezo cerchio AEB l’angolo E è retto, il cerchio il cui diametro è AB, sarà eguale alli due cerchi de i diametri AE, EB; ma AE è il diametro del voto della canna; adunque il cerchio il cui diametro sia EB, sarà egual alla ciambella ACBD: e però il cilindro solido, il cerchio della cui base abbia il diametro EB, sarà eguale alla canna, essendo egualmente lungo. Dimostrato questo, potremo speditamente
Trovare qual proporzione abbiano le resistenze d’una canna e di un cilindro, qualunque siano, pur che egualmente lunghi.
Sia la canna ABE, ed il cilindro RSM egualmente lungo: bisogna trovare qual proporzione abbiano tra di loro le lor resistenze. Trovisi, per la precedente, il cilindro ILN eguale alla canna ed egualmente lungo, e delle linee IL, RS (diametri delle basi de i cilindri IN, RM) sia quarta proporzionale la linea V: dico, la resistenza della canna AE a quella del cilindro RM esser come