Questa pagina è ancora da trascrivere o è incompleta. |
la medesima forza che sendo applicata alla linea BG pareggerà la resistenza DA, pareggerà ancora la resistenza CO. Ed il medesimo si dimostrerà segandosi il solido in qual si sia altro luogo: adunque tal solido parabolico è per tutto egualmente resistente. Che poi, segandosi il prisma secondo la linea parabolica FNB, se ne levi la terza parte, si fa manifesto: perché la semiparabola FNBA e ’l rettangolo FB son basi di due solidi compresi tra due piani paralleli, cioè tra i rettangoli FB, DG, per lo che ritengono tra di loro la medesima proporzione che esse lor basi; ma il rettangolo FB è sesquialtero della semiparabola FNBA; adunque, segando il prisma secondo la linea parabolica, se ne leva la terza parte. Di qui si vede come con diminuzion di peso di più di trentatré per cento si posson far i travamenti, senza diminuir punto la loro gagliardia; il che ne i navilii grandi, in particolare per regger le coverte, può esser d’utile non piccolo, atteso che in cotali fabbriche la leggerezza importa infinitamente.
SAGR. Le utilità son tante, che lungo o impossibil sarebbe il registrarle tutte: ma io, lasciate queste da banda, arei più gusto d’intender che l’alleggerimento si faccia secondo le proporzioni assegnate. Che il taglio secondo la diagonale levi la metà del peso, l’intendo benissimo; ma che l’altro, secondo la parabolica, porti via la terza parte del prisma, posso crederlo al Sig. Salviati, sempre veridico, ma in ciò più della fede mi sarebbe grata la scienza.
SALV. Vorreste dunque aver la dimostrazione, come sia vero che l’eccesso del prisma sopra questo che per ora chiamiamo solido parabolico, sia la terza parte di tutto il prisma. So d’averlo altra volta dimostrato; tenterò ora se potrò rimetter insieme la dimostrazione, per la quale intanto mi sovvien che mi servivo di certo lemma d’Archimede, posto da esso nel libro delle Spirali: ed è, che se quante linee si vogliono si eccederanno egualmente, e l’eccesso sia eguale alla minima di quelle, ed altrettante siano ciascheduna eguale alla massima, i quadrati di tutte queste saranno meno che tripli de i quadrati di quelle che si eccedono; ma i medesimi saranno ben più che