Questa pagina è ancora da trascrivere o è incompleta. |
due solidi di condizioni contrarie, cioè quello tanto più resiste quanto più si scorcia, e questo nello scorciarsi perde altrettanto di robustezza. Ora, stante questo, par ben ragionevole, anzi pur necessario, che se gli possa dare un taglio, per il quale, togliendo via il superfluo, rimanga un solido di figura tale, che in tutte le sue parti sia egualmente resistente.
SIMP. È ben necessario che dove si passa dal maggiore al minore, s’incontri ancora l’eguale.
SAGR. Ma il punto sta ora a trovar come si ha guidar la sega per far questo taglio.
SIMP. Questo mi si rappresenta che dovrebbe esser opera assai facile; perché, se col segar il prisma diagonalmente, levandone la metà, la figura che resta ritien contraria natura a quella del prisma intero, sì che in tutti i luoghi ne i quali questo acquistava robustezza, quello altrettanto la perdeva, parmi che tenendo la via del mezo, cioè levando solamente la metà di quella metà, che è la quarta parte del tutto, la rimanente figura non guadagnerà né perderà robustezza in tutti quei medesimi luoghi ne i quali la perdita e il guadagno dell’altre due figure erano sempre eguali.
SALV. Voi, Sig. Simplicio, non avete dato nel segno: e sì come io vi mostrerò, vedrete veramente che quello che si può segar del prisma e levar via senza indebolirlo, non è la sua quarta parte, ma la terza. Ora resta (che è quello che accennava il Sig. Sagredo) il ritrovar secondo che linea si deve far camminar la sega: la quale proverò che deve esser linea parabolica. Ma prima è necessario dimostrare certo lemma, che è tale:
Se saranno due libre o leve, divise da i loro sostegni in modo, che le due distanze dove si hanno a costituire le potenze, abbiano tra di loro doppia proporzione delle distanze dove saranno le resistenze, le quali resistenze siano tra loro come le lor distanze, le potenze sostenenti saranno eguali.
Siano due leve AB, CD, divise sopra i lor sostegni E, F talmente, che la distanza EB alla FD abbia doppia proporzione di quella che