Pagina:Le opere di Galileo Galilei VIII.djvu/161

de i cubi de’ diametri delle lor basi e della proporzione delle lor lunghezze permutatamente prese.

Siano tali due cilindri ABC, DEF: dico, la resistenza del cilindro AC alla resistenza del cilindro DF aver la proporzione composta della proporzione del cubo del diametro AB al cubo del diametro DE e della proporzione della lunghezza EF alla lunghezza BC. Pongasi la EG eguale alla BC, e delle linee AB, DE sia terza proporzionale la H, e quarta la I, e come la EF alla BC così sia la I alla S. E perché la resistenza del cilindro AC alla resistenza del cilindro DG è come il cubo AB al cubo DE, cioè come la linea AB alla linea I; e la resistenza del cilindro DG alla resistenza del cilindro DF come la lunghezza FE alla EG, cioè come la linea I alla S; adunque, per l’egual proporzione come la resistenza del cilindro AC alla resistenza del cilindro DF, così la linea AB alla S: ma la linea AB alla S ha la proporzion composta della AB alla I e della I alla S: adunque la resistenza del cilindro AC alla resistenza del cilindro DF ha la proporzion composta della AB alla I, cioè del cubo di AB al cubo di DE, e della proporzione della linea I alla S, cioè della lunghezza EF alla lunghezza BC: che è quello che intendevo di dimostrare.

Dopo la dimostrata proposizione, voglio che consideriamo quello che accaggia tra i cilindri e prismi simili: de i quali dimostreremo come:


De i cilindri e prismi simili i momenti composti, cioè risultanti dalle lor gravità e dalle loro lunghezze, che sono come leve, hanno tra di loro proporzione sesquialtera di quella che hanno le resistenze delle medesime lor basi.

Per il che dimostrare, segniamo i due cilindri simili AB, CD: dico, il momento del cilindro AB per superare la resistenza della sua base B, al momento di CD per superare la resistenza della sua D,