Questa pagina è ancora da trascrivere o è incompleta. |
restino della medesima lunghezza e si accresca la grossezza. E qui dico che:
Ne i prismi e cilindri egualmente lunghi, ma disegualmente grossi, la resistenza all’esser rotti cresce in triplicata proporzione de i diametri delle lor grossezze, cioè delle lor basi.
I due cilindri siano questi A, B; le cui lunghezze eguali, DG, FH; le basi diseguali, i cerchi i cui diametri CD, EF: dico, la resistenza del cilindro B alla resistenza del cilindro A, ad esser rotti, aver triplicata proporzione di quella che ha il diametro FE al diametro DC. Imperò che, se consideriamo l’assoluta e semplice resistenza che risiede nelle basi, cioè ne i cerchi EF, DC, all’essere strappati facendogli forza col tirargli per diritto, non è dubbio che la resistenza del cilindro B è tanto maggiore che quella del cilindro A, quanto il cerchio EF è maggiore del CD, perché tante più sono le fibre, i filamenti o le parti tenaci, che tengono unite le parti de i solidi. Ma se consideriamo che nel far forza per traverso ci serviamo di due leve, delle quali le parti o distanze dove si applicano le forze sono le linee DG, FH, i sostegni sono ne’ punti D, F, ma le altre parti o distanze dove son poste le resistenze sono i semidiametri de i cerchi DC, EF, perché i filamenti sparsi per tutte le superficie de i cerchi è come se tutti si riducessero ne i centri; considerando, dico, tali leve, intenderemo, la resistenza nel centro della base EF contro alla forza di H esser tanto maggiore della resistenza della base CD contro alla forza posta in G (e sono le forze in G ed H di leve uguali DG, FH), quanto il semidiametro FE è maggiore del semidiametro DC. Cresce dunque la resistenza all’esser rotto nel cilindro B sopra la resistenza del cilindro A secondo amendue le proporzioni de i cerchi EF, DC e de i lor semidiametri, o vogliam dir diametri: ma la proporzione de i cerchi è doppia di quella de i diametri: adunque la proporzione delle resistenze, che di quelle si compone, è triplicata della proporzione