Pagina:Le opere di Galileo Galilei III.djvu/306


problema mathematicum. 305

mus Lunae circulus montibus coronatur, nulla prorsus est illius demonstratio, qua se putat lunarium montium altitudinem reperisse. Quod vobis liquido constabit, auditores, ubi primum nostram demonstrationem explicuerimus; statim enim corollarii loco efficiemus, ut appareat, sub Galilaei demonstratione tortuosum fallaciae anguem latitare.

Tertium, quod praemittimus, id est: nos lunarem globum quasi perfectam sphaeram, ut antiqui astronomi demonstrarunt, animo concipere, cuius sphaericum corpus eadem undequaque semidiameter dimetiatur; extent vero extra extremam et convexam eius superficiem ii montes, quos antea commemorabamus.

Assumimus etiam lunaris sphaerae diametrum bis mille italicis milliaribus protendi, ex certiori doctissimorum astronomorum ratione et sententia.

Quarto praecedat, licere, sive radio astronomico, sive astrolabio, sive alio quovis instrumento ab antiquis astronomis ad id elaborato, sive tubospecillo recens invento, licere, inquam, earum partium, quae in tenebrosa Lunae semifacie citius reliquis lumen praeripiunt, dimetiri distantias a Lunae diametro, compertumque esse cuiuspiam eiusmodi partis, seu verticis, distantiam centum Italica milliaria comprehendere.

Iactis iam a nobis fundamentis, e regione pugnantibus cum iis quibus Galilaei demonstratio nititur, alia etiam via incedendum erit, alia addenda, permutanda alia, elucidanda non pauca, aliqua confirmanda, quae ipse infirma reliquit, cum tamen rationes, easque firmissimas, postularent; demum pene nova demonstratio condenda est.

Age iam ad id, quod initio proposueramus, demonstrandum accedamus, nempe lunaribus montibus terrestrium montium altitudines facillime concedere§ 1. Sit igitur in hac figura lunaris corporis circulus maximus ABCD; radius vero a Sole ad Lunam transmissus linea

  1. Postilla marginale: «Hic incipit quod praecipue intendimus, scilicet demonstratio de altitudine montium lunarium. Quae (dato et non concesso, nullos in Luna esse montes) adhuc tamen mirabilis esset, quia demonstrative semper ostendit, quanta esset altitudo cuiusque corporis quod poneres in Lunae superficie, modo sit nota distantia eius corporis a Lunae diametro.»