Pagina:Le opere di Galileo Galilei I.djvu/302


de motu. 299

esset perfecta sphaerica, et, item, materia durissima, aut fluida ut aqua. Quae omnia si ita disposita fuerint, quodcunque mobile super planum horizonti aequidistans a minima vi movebitur, imo et a vi minori quam quaevis alia vis. Et hoc, quia videtur satis creditu difficile, demonstrabitur hac demonstratione.

Sit itaque circulus, cuius centrum a, et libra bc mobilis super centro a, et horizonti aequidistans; a centro vero a ducta sit perpendicularis ad, ad mundi centrum tendens; et ex puncto d imaginetur pendens quodcunque pondus. Manifestum est iam quod pondus in d, dum movetur versus c, necessario ascendit. Dico igitur, quamcunque vim puncto b impositam posse movere pondus in d, et necessario movere. Intelligatur enim aliquod pondus, quantumvis parvum, ex puncto b pendens; et sicut pondus in d ad pondus in b, ita fiat linea ba ad aliam, cui aequalis ponatur linea ae. Si itaque d pendeat ex puncto e, tunc aequeponderabit cum pendere in b; nec alterum ab altero movebitur, nec lanx inclinabitur. At pondus in d ex a pendens levius est quam pendens ex e, quia non solum centro est propinquius appensum, verum ex ipso centro pendens: necesse est ut pondus in d, pendens ex a, a pondere in b moveatur, et lanx inclinetur ex parte b, et d ascendat. Ergo, si a quacunque vi quodcunque pondus in d, nedum movetur, verum etiam attollitur, quid ergo mirum est, idem pondus d ab eadem vel minori vi, quam sit vis in b, in plano non ascendente moveri? Amplius: mobile, nullam extrinsecam habens resistentiam, in plano sub horizonte quantulumcunque inclinato naturaliter descendet, nulla adhibita vi extrinseca; ut patet in aqua: et idem mobile in plano quantulumcunque super horizontem erecto non nisi violenter ascendit: ergo restat, quod in ipso horizonte nec naturaliter nec violenter moveatur. Quod si non violenter movetur, ergo a vi omnium minima moveri poterit. Quod etiam aliter demonstrare possumus: nempe, quodcunque mobile, nullam extrinsecam resistentiam patiens, a vi quae minor sit quacunque vi proposita, in plano quod nec sursum nec deorsum tendat, moveri posse. Ad cuius demonstrationem hoc supponimus: nempe, mobile grave quodcunque a minori vi moveri

3. equidistante – 7. equidistans – 7-8. perpendicularis ab – 15. equeponderabit – 24-25. ascendente moveatur – 27. adibita – 34. dendat