Pagina:Le opere di Galileo Galilei I.djvu/300


de motu. 297

quam per bd: quaeritur insuper quanto velocius per ba quam per bd, et hic quam per be, mobile descendat. Ut igitur haec consequi possimus, prius hoc est considerandum, quod etiam supra animadvertimus: scilicet, quod manifestum est, grave deorsum ferri tanta vi, quanta esset necessaria ad illud sursum trahendum; hoc est, fertur deorsum tanta vi, quanta resistit ne ascendat. Si itaque inveniamus quanto minori vi trahitur sursum grave per lineam bd quam per lineam ba, erit iam inventum quanto maiori vi descendat idem grave per lineam ab quam per lineam bd; et, similiter, si inveniamus quanto maior vis requiritur ad sursum impellendum mobile per lineam bd quam per be, erit iam compertum quanto maiori vi descendet per bd quam per be, Sed tunc sciemus quanto minor vis requiratur ad sursum trahendum mobile per bd quam per be, quando cognoverimus quanto eiusdem mobilis maior erit gravitas in plano secundum lineam bd, quam in plano secundum lineam be. Procedamus itaque ad inquisitionem talis gravitatis. Et1 intelligatur libra cd, cuius centrum a, et in puncto c pondus aequale ponderi alii quod sit in puncto d. Si itaque intelligamus, lineam ad, manente puncto a, moveri versus b, in primo puncto d descensus mobilis erit veluti per lineam ef; quare per lineam ef descensus mobilis erit secundum gravitatem mobilis in puncto d. Rursus, quando mobile erit in puncto s, in primo puncto s suus descensus erit veluti per lineam gh; quare mobilis per lineam gh motus erit secundum gravitatem quam habet mobile in puncto s. Et rursus, quando mobile erit in puncto r, tunc illius descensus in primo puncto r erit veluti per lineam tn; quare mobile per lineam tn movebitur secundum gravitatem quam habet in puncto r. Si

8. vi deorsum moveatur descendat – 18. aliopunto


  1. Qui l’Autore, come attraverso alle cancellature può leggersi, aveva da prima dato al suo pensiero la forma seguente: «Et intelligatur linea ab, quae, manente puncto a, circunduci possit et circulum describat; et ex puncto b pendeat pondus o; et intelligatur, rursus, libra cd, cuius centrum a; et in puncto c adhaereat [il ms.: adhereat] aliud pondus aequale ponderi b; et aliud, b aequale, sit in puncto [il ms.: punto] d».