Questa pagina è stata trascritta e formattata, ma deve essere riletta. |
LIBRO |
e passa .426 diro che sia la distantia ypothumissale, over diametrale .a e. che è il secondo proposito. Ancora per la penultima del 1. di Euclide. Io potea trovar la detta ypothumissa .e a. multiplicando il lato .e f. in se che saria .65536. ancora il lato .f a. in se che faria .116508 et questi dui quadrati gionti insieme fariano .182044 di questa summa pigliandone la radice quadrata la qual saria pur .426 si come per l’altra via fu trovato e tanto diria che fusse la detta distantia ypothumissale .e a. che saria pur il medemo secondo proposito. Ma se per caso il piano terreo .b d. non fusse perfetto piano (come la maggior parte delle volte accade) procederò si come nella precedente livelando, et misurando con industria la linea .e f. et poi procedero si, come disopra è stato fatto eccetto che in luoco della linea .e c. gli agiongero la quantita .f b. o sia piu, over meno de passa 2. et cosi conchiudero il proposito. Et se per caso il perpendicolo del mio stromento non mi cascasse sopra integral ponto, over divisione, essempi grati sel me cascasse sopra al nono ponto è mezzo del decimo, cioè a ponti 9 over a 9 procederia pur si come disopra è stato fatto multiplicando la detta distantia cioè li passa .256. per 12 et tal multiplicatione partiria per 9 over 9 et a quello che venisse gli agiongerei la perpendicolar del mio occhio, over la quantita .f b. get tanto quanto fusse tal suma, tanto conchiuderei che fusse la altezza .a b. et cosi mi governarei in ogni altro rotto de ponto, over divisione, che è il proposito. E pero per fuggir li rotti laudo a dover divider ciascaduno di 12 .et 12. ponti in altre 12 parti (come fu detto nella costrution dello detto istrumento) liquali si chiamano minuti per ilche cadauna ombra veria a esser divisa in 144. minuti.
A se il perpendicolo del mio istromento cascara sopra il lato della ombra versa, all’hora me dinotara che il spacio che sara fra me et la basa della altezza, con la perpendicolar del mio occhio, over con la linea .f b. esser maggiore della altezza della cosa apparente, in tal proportione qual è .12. al numero di ponti della ombra versa dove cade il perpendicolo del mio istrumento et tal cosa in la pratica de numeri conchiudero in questo modo multiplicaro il numero di passa (over altra misura) che è per retta linea delli mei pedi alla basa di tal altezza (over dal mio occhio al ponto dove che il pian del orizonte sega quella) per li ponti over minuti di l’ombra versa (dove cade il piombino del mio istromento) e quella multiplicatione partiro per 12. over per 144. et a quello che venira gli giongero la quantita della perpendicolare del mio occhio a terra (essendo in perfetto piano) over la quantita, che sara dal poto dove sega quella il pian del orizonte a terra e tanto quanto sara tal suma tanto conchiudero che sia la detta altezza, essempi gratia poniamo che il perpendicolo del mio istrometo mi cada sopra il decimo ponto della ombra verso, come di sotto appar in disegno, et pono che dal ponto .c. al ponto .b. over dal ponto .e, al ponto .f. sia passa 350. et che dal mio occhio over dal ponto .f. a terra sia passa 2. multiplicaro gli detti passa 350. per 10. (cioè per li ponti de l’ombra versa dove cada il perpendicolo (fara 3500. et questo 3500. partiro per 12. (cioè per le 12. divisioni, over ponti de cadauna ombra, over del lato dil quadro) ne venira 291 et a questo 291 gli giongero .2. (cioè li passa che havemo supposto che sia dal ponto .e. al poto c. over dal ponto .f. al ponto .b.) fara .293 et passa .293 conchiudero che sia la detta altezza