Questa pagina è stata trascritta, formattata e riletta. |
33 |
elementi di una tale sintesi. Ma se essi, come specialisti, stabiliti i loro principî e le loro costruzioni in modo inappuntabile, possono procedere nelle questioni filosofiche per via di eliminazione delle varie ipotesi che si contendono il campo, non debbono però lasciarsi tentare a dare come definitive, sintesi filosofiche per le quali essi non abbiano ancora gli elementi necessari e sufficienti.
Così il popolarizzare la scienza è certo un compito sociale nobilissimo e utilissimo, che lo scienziato serio, quando può, non deve trascurare e tanto meno sdegnare; ma se pure non possa seguire in questo ufficio un metodo strettamente scientifico, non deve mai oltrepassare i giusti limiti. Non mancano bellissimi esempi, e nella popolarizzazione delle scienze esatte va segnalato anche quello recente dato dal Poincaré nei libri sopra citati, per quanto si possa anche in alcuni punti dissentire da lui.
(13) Occorre però provare che possiamo assoggettare i punti dello spazio ordinario ed un punto fuori di esso agli stessi postulati che derivano dall’esperienza ed agli altri già necessari per la costruzione dello spazio ordinario. E ciò può farsi non solo coll’analisi, ma anche colla geometria, costruendo nello stesso spazio ordinario, coi metodi della geometria descrittiva a più di tre dimensioni, una varietà a quattro dimensioni, che soddisfa appunto a quegli assiomi.
Un punto dello spazio ordinario in questa varietà rappresenta una semplice infinità di punti, che mediante certe convenzioni vengono distinti fra loro.
(14) Dal punto di vista della deduzione, l’uso dei metodi analitico o geometrico non è importante, se non in quanto esso può servire a risolvere difficili questioni; ma da quello dei principî della scienza, la costruzione puramente geometrica degli spazi a più dimensioni, che deriva dalla distinzione dell’idea di spazio geometrico da quella di spazio fisico e di spazio intuitivo, è invece di molta importanza, perchè ci dà effettivamente il contenuto geometrico della geometria a più di tre dimensioni, come l’analoga costruzione ci dà quella del piano e dello spazio ordinario, dalla quale deduciamo le loro proprietà.