Questa pagina è stata trascritta, formattata e riletta. |
32 |
questo postulato nello spazio fisico, lo traduciamo poi in un postulato di un campo limitato dello spazio geometrico (nel quale può essere però sostituito anche dai non euclidei), ma pur lavorando in questo spazio coll’intuizione combinata coll’astrazione, se vogliamo estendere il postulato a tutto lo spazio illimitato geometricamente non possiamo affidarci ad una necessità intuitiva, non concessa da tutti, come è invece concessa la necessità dei principi della logica; dobbiamo bensì provare in qualche modo che tale estensione è possibile logicamente.
Si possono ammettere bensì, come assiomi, le proposizioni fondamentali semplici che derivano dall’osservazione diretta pel campo esteriore; ma per l’estensione di queste proposizioni allo spazio illimitato di altre, più propriamente dette postulati o ipotesi, che non possiamo verificare direttamente, dobbiamo dimostrarne la possibilità logica.
Come ho sopra osservato (nota 2), la matematica pura non ha che da rigettare il puro empirismo, perchè esso sarebbe un impedimento al suo sviluppo; invece la geometria e la meccanica non possono accettare quelle ipotesi filosofiche che contrastano con l’origine sperimentale di esse e con le loro conseguenze, pur creando anche delle forme che non trovano riscontro nel mondo fisico, mentre nelle applicazioni allo studio dei fenomeni fisici il matematico deve attenersi scrupolosamente all’interpretazione sperimentale della Natura. Sono quindi tre modi diversi che il matematico segue di fronte alle ipotesi filosofiche sulla conoscenza, secondo che si tratta della matematica pura, della geometria e della meccanica teorica, e delle applicazioni di esse allo studio del mondo fisico.
Il pensiero, la psiche e il senso sono così intimamente connessi fra loro, che la separazione di ciò che è un prodotto di ciascuno è quasi sempre un problema arduo, se non di impossibile soluzione; di guisa che spesso la filosofia vi gira intorno da secoli, senza potervi penetrare completamente e raggiungere una soluzione definitiva. Soltanto con la specificazione e semplificazione delle ricerche e con un indirizzo sperimentale e scientifico, come accade ad es. nei principî della matematica, si potrà sperare di arrivare, in alcuni problemi almeno, ad una sintesi filosofica chiara e sicura, onde gli scienziati specialisti potranno diventare così i veri filosofi, preparando gli