Pagina:Giuseppe Veronese - Il vero nella matematica, 1906.djvu/35


31

nomia, il Poincaré osserva che, verificandosi una delle due altre ipotesi, sarebbe più comodo ammettere che la luce non si propaghi in linea retta. A noi sembra che sarebbe questione di comodità ma non di verità; ad ogni modo, basterebbe provare con mezzi più perfezionati, senza ricorrere all’astronomia, che le distanze eguali misurate per stabilire il postulato delle parallele nella forma da me data o in altre analoghe non sono effettivamente eguali, come ho sopra osservato (nota 2).

Pur accordandomi coll’Helmholtz sulla critica alle forme trascendenti a priori del Kant, essa però non è esente dall’obiezione che, non avendo egli ben distinto lo spazio geometrico dallo spazio intuitivo, appoggia sul principio del movimento dei corpi rigidi (nota 3) la definizione di eguaglianza delle grandezze fisiche, ritenendo tale principio necessario per la geometria.

Ci siamo associati nei Fondamenti (pref., p. 14) all’osservazione del Wundt contraria all’opinione dell’Helmholtz, il quale, combattendo la teoria Kantiana, osserva che lo spazio potrebbe considerarsi quale forma a priori dell’intuizione senza che lo fossero anche i postulati. Vedi anche C. Cantoni: L’apriorité de l’espace dans la doctrine critique de Kant. Revue de Métaphisique et de Morale, Paris. Ma meno ancora possiamo concedere che, riconoscendo l’origine empirica della geometria, e che quindi nel mondo fisico il postulato di Euclide è meno sicuro degli altri, si attribuisca poi a questo postulato una necessità intuitiva subiettiva, perchè la intuizione in tal caso dipende necessariamente dall’elemento empirico e può variare con esso. (Vedi Enriquez: Sulla spiegazione psicologica dei postulati della geometria. Rivista fil. di C. Cantoni, 1901).

Abbiamo certo la facoltà di intuire lo spazio, ma questa facoltà non è ancora l’intuizione. Si può ammettere anche un’intuizione logica distinta da quella proveniente dai sensi, e per quanto abbiamo detto nel testo sulla legge dell’illimitato, che è una necessità mentale, non possiamo ancora dire se la prima intuizione derivi necessariamente dalla seconda; certo è che nè l’una nè l’altra, o ambidue combinate insieme, ci conducono a una necessità intuitiva del postulato di Euclide. Il geometra non ha alcuna ragione di preferire questa o quella ipotesi filosofica sulla genesi delle sue idee, ma deve essere contrario a ipotesi come questa della necessità subiettiva del postulato di Euclide. Riconosciamo bensì la validità approssimativa di