Pagina:Galilei - Discorsi e dimostrazioni matematiche intorno a due nuove scienze - 1638.djvu/147

SALV. Già ero in procinto di dirvi cosa assai notabile e vaga in questo proposito. Fo un poco di figura per meglio dichiararmi

. Questo DB è un prisma, la cui resistenza ad essere spezzato nell’estremità AD da una forza premente nel termine B è tanto minore della resistenza che si troverebbe nel luogo CI, quanto la lunghezza CB è minore della BA, come già si è dimostrato. Intendasi adesso il medesimo prisma segato diagonalmente secondo la linea FB, sì che le faccie opposte siano due triangoli, uno de i quali, verso noi, è questo FAB: ottiene tal solido contraria natura del prisma, cioè che meno resiste all’essere spezzato sopra ’l termine C che sopra l’A dalla forza posta in B, quanto la lunghezza CB è minore della BA. Il che facilmente proveremo: perché intendendo il taglio CNO parallelo all’altro AFD, la linea FA alla CN nel triangolo FAB arà la medesima proporzione che la linea AB alla BC; e però se noi intenderemo, ne i punti A, C esser i sostegni di due leve, le cui distanze BA, AF, BC, CN, queste saranno simili; e però quel momento che ha la forza posta in B con la distanza BA sopra la resistenza posta nella distanza AF, l’arà la medesima forza in B con la distanza BC sopra la medesima resistenza che fusse posta nella distanza CN: ma la resistenza da superarsi nel sostegno C, posta nella distanza CN, dalla forza in B, è minore della resistenza in A tanto, quanto il rettangolo CO è minore del rettangolo AD, cioè quanto la linea CN è minore della AF, cioè la CB della BA: adunque la resistenza della parte OCB ad esser rotto in C è tanto minore della resistenza dell’intero DAB ad esser rotto in A, quanto la lunghezza CB è minore della AB. Aviamo dunque nel trave o prisma DB levatone una parte, cioè la metà, segandolo diagonalmente, e lasciato il cuneo o prisma triangolare FBA; e sono due solidi di condizioni contrarie,