Pagina:Elementi.djvu/59


DI EVCLIDE

duoi lati .a.b. & .b.c. del triangolo .a.b.c. & l’angolo .a.b.c. è equale all’angolo g.e.f. dal prosupposito, per laqual cosa l’angolo .g.f.e. seria equale all’angolo .a.c.b. per la quarta propositione, & perche l’angolo .d.f.e. si è anchora lui equale al ditto angolo .a.c.b. dal prosupposito per la prima concettione, serà etiam equale all’angolo .g.f.e. sua parte, che è impossibile, per l’ultima concettione, adonque .d.e. serà equale al .a.b, per la quarta propositione, il lato .d.f. sera etiam equale al lato .a.c. & l’angolo .d. all’angolo .a. serà equale, che è il primo membro della diuision proposita, Sia anchora li duoi angoli .b. & .c. equali alli duoi angoli .e.f. come prima, & sia il lato .a.b. ilquale è opposito all’angolo .c. equale al lato .d.e. ilqual è opposito all’angolo .f. ilqual è posto equale all’angolo .c. dico che lato .b.c. serà equal al lato .e.f. & il lato .a.c. al lato .d.f & l’angolo .a. all’angolo .d. & sel lato .e.f. non fusse equale al lato lato .b.c. per l’aduersario l’uno di loro serà maggior dell’altro, sia adonque .e.f. maggior del .b.c. e per tanto ponerò .e.h. equale al .b.c. per la tertia propositione, & produrò la linea .d.h. & serà constituido il triangolo .d.e.h. che li duoi lati .e.d. & .e.h. son equali alli duoi lati .bc. & .b.a. del triangolo .a.b.c. e l’angolo .e. si è equale all’angolo .b. dal presupposito, dilche l’angolo .e.h.d. seria equale a l’angolo .b.c.a. per la quarta propositione, e l’angolo .f. per esser equale anchora all’angolo .c. serà etiam equale all’angolo .e.h.d. per la prima concettione, laqual cosa è impossibile, per la sestadecima propositione, che l’angolo .e.h.d. estrinsico del triangolo .d.h.f. sia equale allo angolo .h.f.d. intrinsico, & opposito, adonque il lato .e.f. serà equale al lato .b.c. & similmente, per la quarta propositione, il lato .d.f. al lato .a.c. serà equale,e l’angolo .e.d.f. all’angolo .b.a.c. che è il secondo membro della proposita diuisione, dilche tutto il proposito serà manifesto.


Theorema.18. Propositione.27.

27|27 Se una linea retta caderà sopra a due linee rette, & facia li duoi angoli coalterni fra loro equali, quelle due linee seranno equidistante.

Sia come è la linea .a.b. laqual cade sopra le due linee .c.d. & .e.f. & sega la linea .c.d. in ponto .g. & la linea .e.f. in ponto .h. & sia l’angolo .d.g.h. equale all’angolo .e.h.g. Dico che le dette due linee .c.d. & .e.f. sono equidistante, ma se possibile è

per lo aduersario, che non siano equidistante, poniamo che protratte dalla parte .c.e. concorrano nel ponto .k. ouero dalla parte .d.f. nel ponto .l. & sia pur come si uoglia, che accaderà lo impossibile, per la decimasesta propositione, perche l’angolo estrinseco seria equale allo intrinseco, & opposito, perche uno delli detti angoli alterni, liquali sono posti equali, serà lo estrinsico, & l’altro serà lo intrinsico, perche concorrendo due linee .d.c. et .e.f. in ponto .k. seria formato uno triangolo, che seria .g.h.k. & seria prodotto il lato .k.g. fina in .d. facendo l’angolo .h.g.d. estrinseco, ilquale è posto equale all’angolo .e.h.g. intrinseco, & opposito, laqual cosa è impossibile per la sopralegata propositione: e perche l’è impossibile che le due linee, protratte da qual parte si uoglia, concorrano