Pagina:Elementi.djvu/48


LIBRO PRIMO. 24

sitione)

fra loro equale, & si produrò la linea .d.e. sopra laquale, costituerò il triangolo .d.f.e. equilatero (per la prima propositione) et tirarò la linea .b.f. hor dico che quella diuide il detto angolo dato in due parti equale, & per dimostrar questo: io intendo li duoi triangoli .d.b.f. & .e.b.f. & perche li dui lati .b.d. & .b.f. del triangolo .d.b.f. sono equali alli duoi lati b.e. & .b.f. del triangolo .e.b.f. e la basa .d.f. alla basa .e.f. adonque (per la precedente) l’angolo .d.b.f. è equale all’angolo .e.b.f. che è il proposito.


Il Tradottore.

In questa si come nella prima, bisogna notar che per diuidere simplicemente il detto angolo .a.b.c. in due parti equali, cioè non uolendo far la demostration di tal operare non è necessario a disignare il triangolo .d.f.e. & manco a tirare la linea .d.e. ma basta solamente a trouar il ponto .f. per mezzo della intersecatione delle circonferentie di dui cerchi (come sopra la prima proposition fu detto) & dapoi tirare la linea .b. & serà esequido tal problema, & cosi aduertirai nelle altre che seguitano, perche molte cose se fa per poter far la demostratione.


Problema.5. Propositione.10.

10|10 Puotemo diuidere una proposta retta linea in due parti equale.

Sia la proposta retta linea che è di bisogno diuidere in due parti equali la linea. a.b. sopra di quella costituerò il triangolo .a.b.c. equilatero, & dopo questo diuiderò l’angolo .c. in due parti equali per la dottrina della precedente con la linea .c.d. hor dico che la linea .c. d. diuide la data linea .a.b. in due parti equali in ponto .d. e per dimostrar questo intendo li dui triangoli .a.c.d. et .b.c.d. & arguisco in questo modo li dui lati .a.c. & .c.d. del triangolo .a.c.d. sono equali alli duoi lati b.c. & .c.d. del triangolo .b.c.d. e l’angolo .c. dell’un è equal all’angol .c. dell’altro adonque (per la quarta) la basa .a.d. serà equale alla basa ,b.d. seguita adonque che la linea .a.b. sia diuisa in due parti equali nel ponto .d. che è il proposito.