Pagina:Codifica numerica del segnale audio.djvu/169


5 - Codifica numerica di forma d’onda con memoria 151

Tale segnale può essere pensato come l’uscita di un sistema discreto del secondo ordine con due poli complessi coniugati sulla circonferenza unitaria a ω = ± π/4 [Appendice A.l], Infatti, data la funzione di autocorrelazione

  (5.63)

se si considera un predittore del secondo ordine, è possibile ricavarne i relativi coefficienti come

  (5.64)

Da tali coefficienti si ottiene un corrispondente processo ARX, il cui denominatore ha radici

  (5.65)

che corrisponde a poli con modulo unitario e pulsazione ω = ± π/4. Viceversa, considerando un predittore di ordine maggiore, la matrice di autocorrelazione diviene a determinante nullo e la soluzione dell’equazione di Wiener-Hopf è impossibile. Ad esempio, considerando un predittore del quarto ordine

  (5.66)

Utilizzare un predittore di ordine eccessivo si traduce in problemi di instabilità numerica nel caso di analisi di segnali con energia concentrata alle frequenze inferiori (e quindi fortemente correlati), in quanto la matrice di