Pagina:Bonola - La geometria non-euclidea.djvu/176

stella di rette offre una interpretazione concreta del sistema ellittico di RIEMANN. Se poi si sega la stella col piano ordinario, completato dalla retta all'infinito, si ottiene una rappresentazione sul piano euclideo del piano riemanniano in discorso.

Volendo una rappresentazione dello spazio ellittico sullo spazio euclideo basterebbe assumere in questo una polarità uniforme, cui corrisponde una quadrica fondamentale immaginaria non degenere, e porre, rispetto a questa quadrica, un sistema di definizioni analogo a quello precedentemente indicato nel caso iperbolico. Non insistiamo però sulla cosa, perchè non offre alcuna nuova difficoltà.

Notiamo però che in questa rappresentazione tutti i punti dello spazio euclideo, compresi i punti del piano all'infinito, verrebbero a corrispondere biunivocamente a punti dello spazio riemanniano.


FONDAZIONE DELLA GEOMETRIA PARTENDO DAI CONCETTI GRAFICI.


§ 93. I principi esposti nei precedenti §§ conducono ad un nuovo ordine di idee, nel quale si pongono a primo fondamento della geometria le proprietà grafiche, anzichè le proprietà della congruenza e del movimento, di cui si servirono RIEMANN ed HELMHOLTZ. Si noti che, non volendo sin da principio introdurre veruna ipotesi sulla intersezione di rette coplanari, conviene partire da un opportuno sistema di postulati, valido in una regione limitata di spazio, e completare successivamente la regione iniziale per mezzo di punti, rette, piani impropri [cfr. § 80]1.

  1. Per gli sviluppi relativi vedi: KLEIN, opere citate nella nota n. 150; PASCH: «Vorlesungen über neuere Geometrie.» [Leipzig, Teubner, 1882]; SCHUR: «Über die Einführung der sogenannten idealen Ele-