Questa pagina è stata trascritta e formattata, ma deve essere riletta. |
74 | GLI ELEMENTI D’EUCLIDE. |
traggasi il comune quadrato di AE; rimarrà il rettangolo FK eguale al quadrato AD. Sottraggasi AK ad ambedue; rimarrà il quadrato FH eguale al rimanente rettangolo HD. Laonde il rettangolo delle AB, BH è eguale al quadrato di AH: e però la data retta AB è segata in H nel modo richiesto.
PROPOSIZIONE XII.
teorema.
In un triangolo ottusangolo il quadrato del lato opposto all’angolo ottuso supera di tanto la somma dei quadrati degli altri due lati quanto è il doppio rettangolo contenuto da uno de’ lati che sono dintorno all’angolo ottuso, e dalla porzione del prolungamento di esso lato che è compresa fra il vertice dell’angolo ottuso e la perpendicolare abbassata dal vertice opposto.
Sia il triangolo ottusangolo AEC, che abbia l’angolo ottuso EAC, e dal punto E tirisi alla CA prolungata la perpendicolare ED. Dico che il quadrato di CE è tanto maggiore della somma dei quadrati di EA, AC, quanto è il doppio rettangolo delle CA, AD.
Perciocchè essendo la linea CD segata in qualunque modo nel punto A, [II, 4] sarà il quadrato di CD eguale alla somma dei quadrati di CA, AD, e del doppio rettangolo che è contenuto dalle CA, AD. Aggiungendo il quadrato di DE; abbiamo che i quadrati