Questa pagina è ancora da trascrivere o è incompleta. |
Al termine del percorso didattico lo studente avrà approfondito i procedimenti caratteristici del pensiero matematico (definizioni, dimostrazioni, generalizzazioni, formalizzazioni), conoscerà le metodologie di base per la costruzione di un modello matematico di un insieme di fenomeni, saprà applicare quanto appreso per la soluzione di problemi, anche utilizzando strumenti informatici di rappresentazione geometrica e di calcolo. Tali capacità operative saranno particolarmente sviluppate nell’ambito delle modellizzazioni matematiche dei processi sociali ed economici. Lo studente approfondirà la valutazione critica dei vantaggi, delle difficoltà e dei limiti dell’approccio matematico in un ambito di elevata complessità come questo.
Gli strumenti informatici oggi disponibili offrono contesti idonei per rappresentare e manipolare oggetti matematici. L’insegnamento della matematica offre numerose occasioni per acquisire familiarità con tali strumenti e per comprenderne il valore metodologico. Il percorso, quando ciò si rivelerà opportuno, favorirà l’uso di questi strumenti, anche in vista del loro uso per il trattamento dei dati nelle altre discipline scientifiche. L’uso degli strumenti informatici è una risorsa importante che sarà introdotta in modo critico, senza creare l’illusione che essa sia un mezzo automatico di risoluzione di problemi e senza compromettere la necessaria acquisizione di capacità di calcolo mentale.
L’ampio spettro di contenuti affrontati richiederà che l’insegnante sia consapevole della necessità di un buon impiego del tempo disponibile. Ferma restando l’importanza dell’acquisizione delle tecniche, verranno evitate dispersioni in tecnicismi ripetitivi o casistiche sterili che non contribuiscono in modo significativo alla comprensione dei problemi. L’approfondimento degli aspetti tecnici non perderà mai di vista l’obiettivo della comprensione in profondità degli aspetti concettuali della disciplina. L’indicazione principale e’: pochi concetti e metodi fondamentali, acquisiti in profondità.
OBIETTIVI SPECIFICI DI APPRENDIMENTO
PRIMO BIENNIO
Aritmetica e algebra
Il primo biennio sarà dedicato al passaggio dal calcolo aritmetico a quello algebrico. Lo studente svilupperà le sue capacità nel calcolo (mentale, con carta e penna, mediante strumenti) con i numeri interi, con i numeri razionali sia nella scrittura come frazione che nella rappresentazione decimale. In questo contesto saranno studiate le proprietà delle operazioni. Lo studio dell’algoritmo euclideo per la determinazione del MCD permetterà di approfondire la conoscenza della struttura dei numeri interi e di un esempio importante di procedimento algoritmico. Lo studente acquisirà una conoscenza intuitiva dei numeri reali, con particolare riferimento alla loro rappresentazione geometrica su una retta. La dimostrazione dell’irrazionalità di v e di altri numeri sarà un’importante occasione di approfondimento concettuale. Lo studio dei numeri irrazionali e delle espressioni in cui essi compaiono fornirà un esempio significativo di applicazione del calcolo algebrico e un’occasione per affrontare il tema dell’approssimazione.
L’acquisizione dei metodi di calcolo dei radicali non sarà accompagnata da eccessivi tecnicismi manipolatori.
Lo studente apprenderà gli elementi di base del calcolo letterale, le proprietà dei polinomi e le più semplici operazioni tra di essi.
Lo studente acquisirà la capacità di eseguire calcoli con le espressioni letterali sia per rappresentare un problema (mediante un’equazione, disequazioni o sistemi) e risolverlo, sia per dimostrare risultati generali, in particolare in aritmetica.
Geometria
Il primo biennio avrà come obiettivo la conoscenza dei fondamenti della geometria euclidea del piano. Verrà chiarita l’importanza e il significato dei concetti di postulato, assioma, definizione, teorema, dimostrazione, con particolare riguardo al fatto che, a partire dagli Elementi di Euclide, essi hanno permeato lo sviluppo della matematica occidentale. In coerenza con