Pagina:211septies.djvu/349

La libertà, la competenza e la sensibilità dell’insegnante - che valuterà di volta in volta il percorso didattico più adeguato alla singola classe - svolgeranno un ruolo fondamentale nel trovare un raccordo con altri insegnamenti (in particolare con quelli di matematica, scienze, storia e filosofia) e nel promuovere collaborazioni tra la sua Istituzione scolastica e Università, enti di ricerca, musei della scienza e mondo del lavoro, soprattutto a vantaggio degli studenti degli ultimi due anni.

In particolare per il liceo delle scienze applicate si sottolinea il ruolo centrale del laboratorio, inteso sia come attività di presentazione da cattedra, sia come esperienza di scoperta e verifica delle leggi fisiche, che consente allo studente di comprendere il carattere induttivo delle leggi e di avere una percezione concreta del nesso tra evidenze sperimentali e modelli teorici.

OBIETTIVI SPECIFICI DI APPRENDIMENTO

PRIMO BIENNIO

Nel primo biennio si inizia a costruire il linguaggio della fisica classica (grandezze fisiche scalari e vettoriali e unità di misura), abituando lo studente a semplificare e modellizzare situazioni reali, a risolvere problemi e ad avere consapevolezza critica del proprio operato.

Al tempo stesso gli esperimenti di laboratorio consentiranno di definire con chiarezza il campo di indagine della disciplina e di permettere allo studente di esplorare fenomeni (sviluppare abilità relative alla misura) e di descriverli con un linguaggio adeguato (incertezze, cifre significative, grafici). L’attività sperimentale lo accompagnerà lungo tutto l’arco del primo biennio, portandolo a una conoscenza sempre più consapevole della disciplina anche mediante la scrittura di relazioni che rielaborino in maniera critica ogni esperimento eseguito.

Attraverso lo studio dell’ottica geometrica, lo studente sarà in grado di interpretare i fenomeni della riflessione e della rifrazione della luce e il funzionamento dei principali strumenti ottici.

Lo studio dei fenomeni termici definirà, da un punto di vista macroscopico, le grandezze temperatura e quantità di calore scambiato introducendo il concetto di equilibrio termico e trattando i passaggi di stato.

Lo studio della meccanica riguarderà problemi relativi all’equilibrio dei corpi e dei fluidi; i moti saranno affrontati innanzitutto dal punto di vista cinematico giungendo alla dinamica con una prima esposizione delle leggi di Newton, con particolare attenzione alla seconda legge. Dall’analisi dei fenomeni meccanici, lo studente incomincerà a familiarizzare con i concetti di lavoro ed energia, per arrivare ad una prima trattazione della legge di conservazione dell’energia meccanica totale.

I temi suggeriti saranno sviluppati dall’insegnante secondo modalità e con un ordine coerenti con gli strumenti concettuali e con le conoscenze matematiche già in possesso degli studenti o contestualmente acquisite nel corso parallelo di Matematica (secondo quanto specificato nelle relative Indicazioni). Lo studente potrà cosi’ fare esperienza, in forma elementare ma rigorosa, del metodo di indagine specifico della fisica, nei suoi aspetti sperimentali, teorici e linguistici.

SECONDO BIENNIO

Nel secondo biennio il percorso didattico darà maggior rilievo all’impianto teorico (le leggi della fisica) e alla sintesi formale (strumenti e modelli matematici), con l’obiettivo di formulare e risolvere problemi più impegnativi, tratti anche dall’esperienza quotidiana, sottolineando la natura quantitativa e predittiva delle leggi fisiche. Inoltre, l’attività sperimentale consentirà allo studente di discutere e costruire concetti, progettare e condurre osservazioni e misure, confrontare esperimenti e teorie.

Saranno riprese le leggi del moto, affiancandole alla discussione dei sistemi di riferimento inerziali e non inerziali e del principio di relatività di Galilei.

L’approfondimento del principio di conservazione dell’energia meccanica, applicato anche al moto dei fluidi e l’affronto degli altri principi di conservazione, permetteranno allo studente di