Questa pagina è stata trascritta e formattata, ma deve essere riletta. |
MATEMATICA
LINEE GENERALI E COMPETENZE
Al termine del percorso del liceo scientifico lo studente conoscerà i concetti e i metodi elementari della matematica, sia interni alla disciplina in sé considerata, sia rilevanti per la descrizione e la previsione di fenomeni, in particolare del mondo fisico. Egli saprà inquadrare le varie teorie matematiche studiate nel contesto storico entro cui si sono sviluppate e ne comprenderà il significato concettuale.
Lo studente avrà acquisito una visione storico-critica dei rapporti tra le tematiche principali del pensiero matematico e il contesto filosofico, scientifico e tecnologico. In particolare, avrà acquisito il senso e la portata dei tre principali momenti che caratterizzano la formazione del pensiero matematico: la matematica nella civiltà greca, il calcolo infinitesimale che nasce con la rivoluzione scientifica del Seicento e che porta alla matematizzazione del mondo fisico, la svolta che prende le mosse dal razionalismo illuministico e che conduce alla formazione della matematica moderna e a un nuovo processo di matematizzazione che investe nuovi campi (tecnologia, scienze sociali, economiche, biologiche) e che ha cambiato il volto della conoscenza scientifica.
Di qui i gruppi di concetti e metodi che saranno obiettivo dello studio:
1) gli elementi della geometria euclidea del piano e dello spazio entro cui prendono forma i procedimenti caratteristici del pensiero matematico (definizioni, dimostrazioni, generalizzazioni, assiomatizzazioni);
2) gli elementi del calcolo algebrico, gli elementi della geometria analitica cartesiana, una buona conoscenza delle funzioni elementari dell’analisi, le nozioni elementari del calcolo differenziale e integrale;
3) gli strumenti matematici di base per lo studio dei fenomeni fisici, con particolare riguardo al calcolo vettoriale e alle equazioni differenziali, in particolare l’equazione di Newton e le sue applicazioni elementari;
4) la conoscenza elementare di alcuni sviluppi della matematica moderna, in particolare degli elementi del calcolo delle probabilità e dell’analisi statistica;
5) il concetto di modello matematico e un’idea chiara della differenza tra la visione della matematizzazione caratteristica della fisica classica (corrispondenza univoca tra matematica e natura) e quello della modellistica (possibilità di rappresentare la stessa classe di fenomeni mediante differenti approcci);
6) costruzione e analisi di semplici modelli matematici di classi di fenomeni, anche utilizzando strumenti informatici per la descrizione e il calcolo;
7) una chiara visione delle caratteristiche dell’approccio assiomatico nella sua forma moderna e delle sue specificità rispetto all’approccio assiomatico della geometria euclidea classica;
8) una conoscenza del principio di induzione matematica e la capacità di saperlo applicare, avendo inoltre un’idea chiara del significato filosofico di questo principio (“invarianza delle leggi del pensiero”), della sua diversità con l’induzione fisica (“invarianza delle leggi dei fenomeni”) e di come esso costituisca un esempio elementare del carattere non strettamente deduttivo del ragionamento matematico.
Questa articolazione di temi e di approcci costituirà la base per istituire collegamenti e confronti concettuali e di metodo con altre discipline come la fisica, le scienze naturali e sociali, la filosofia e la storia.
Al termine del percorso didattico lo studente avrà approfondito i procedimenti caratteristici del pensiero matematico (definizioni, dimostrazioni, generalizzazioni, formalizzazioni), conoscerà le metodologie di base per la costruzione di un modello matematico di un insieme di fenomeni, saprà applicare quanto appreso per la soluzione di problemi, anche utilizzando strumenti informatici di rappresentazione geometrica e di calcolo. Tali capacità operative saranno particolarmente accentuate nel percorso del liceo scientifico, con particolare riguardo per quel che riguarda la conoscenza del calcolo infinitesimale e dei metodi probabilistici di base.