Pagina:Lezioni di analisi matematica.pdf/215


Teoremi fondamentali sulle derivate, ecc. 199

si deduce il seguente teorema d'importanza fondamentale:

Se possiede le prime derivate, e se insieme alle prime derivate è nulla nel punto , allora

,

dove è un punto intermedio tra ed .

Osservazione. Se ne deduce in tal caso

.


Poichè sarà, se è continua nel punto , e se :

.


Questa formola vale anche nella ipotesi che esista la derivata di nel punto e sia determinata e finita (senza che sia necessario ammetterne la continuità). Infatti si trova, come sopra,

( intermedio tra ed ).


Poichè , sarà, posto ,

.

Da cui, passando al limite per , si trae subito il teorema enunciato.

In particolare, poichè è positivo, e poichè ha, per abbastanza prossimo ad , il segno del suo limite per , se ne deduce che, per prossimo ad , la ha il segno di , se questa derivata è determinata e finita e se .

Posto , si vede che, per abbastanza piccolo, nelle nostre ipotesi coincidono i segni di e di , cioè coincidono i segni di e di .

Noi abbiamo dato in questo paragrafo un procedimento per calcolare il limite di un quoziente in qualche caso, in cui non sono applicabili i teoremi del § 35, pag. 115-116. Ad altri casi analoghi sono applicabili le seguenti osservazioni.